Mar
23
Posted by jns on
March 23, 2009
Rather recently I enjoyed reading Charles Seife’s Sun in a Bottle : The Strange History of Fusion and the Science of Wishful Thinking (New York : Viking, 2008; 294 pages). The subtitle is indicative, although I’m not sure just how strange the history of fusion is.
Of course, what he means by “the history of fusion” is not so much the discovery of nuclear fusion, nor really much about its exploitation to build “H-bombs”. Although these topics appear in early chapters to set the fusion stage, the book is mostly devoted to what happened subsequently on the quest for the practical fusion reactor that would fulfill the dream of “unlimited power”.
Well, the quest still goes on and commercial fusion reactors have been just “20 years away” for at least the last 5 decades. All of the “hot fusion” projects are here: “pinch reactors”, magnetic bottles, Tokamaks, and “inertial-confinement” fusion (the name for those giant, multi-laser devices Lawrence-Livermore labs build to zap deuterium pellets), as well as the “cold fusion” wannabes, including Pons and Fleischmann and the later “bubble fusion”, both of which, in the author’s words, have since been “swept to the fringes of science”.
Anyway, my book note is here, but I thought I’d share this one short excerpt that dramatizes why “people of faith” should never be allowed to set policy: anything they really want to “believe” they end up thinking came from their god. By the way, Lewis Strauss was also the guy who was J. Robert Oppenheimer’s principle antagonist during the struggle to take away Oppie’s clearance as some sort of “punishment” for being too liberal.
The paranoid, anti-Communist Edward Teller was the man who most desperately tried to bring us to the promised land. He and his allies lobbied for more and more money to figure out how to harness the immense power of fusion. Lewis Strauss, the AEC chairman and Teller backer, promised the world a future where the energy of the atom would power cities, cure diseases, and grow foods. Nuclear power would reshape the planet. God willed it. the Almighty had decided that humans should unlock the power of the atom , and He would keep us from self-annihilation. “A Higher Intelligence decided that man was ready to receive it,” Strauss wrote in 1955. “My faith tells me that the Creator did not intend man to evolve through the ages to this stage of civilization only now to devise something that would destroy life on this earth. ” [pp. 59—60]
Mar
22
Posted by jns on
March 22, 2009
I’ve been reading lots of good books this year, several that I can count for my own commitment to the Science-Book Challenge, but I am only now catching up on writing about them. Tonight I wanted to mention a trio of top-notch books from three different domains: cosmology, probability & statistics, and history of science (sort of) / chemistry.
1. John Gribbin, The Birth of Time : How Astronomers Measured the Age of the Universe. The subtitle is exactly the theme of the book, and Gribbin answers the question with a very appealing, very satisfying amount of history and scienticity. I marveled at his writing: he made clear, precise writing seem effortless. (My book note.)
2. Leonard Mlodinow, The Drunkard’s Walk : How Randomness Rules our Lives. Here was an excellent combination of clear and precise exposition of the central ideas of probability and statistics integrated with fascinating examples of those concepts injecting randomness into everyday life. Again, I found the writing very engaging and apparently effortless. (My book note.)
3. Steven Johnson, The Invention of Air : A Story of Science, Faith, Revolution, and the Birth of America. Again, the subtitle is truth in advertising. The book was sort of an intellectual biography of Joseph Priestly, who got tangled up in the early days of chemistry research and civil unrest and the American Revolution. Mostly successful but still very engaging and satisfying to read. (My book note.)
From Johnson’s Invention of Air, I did set aside a few extra excerpts I wanted to share. Here they are.
This first excerpt sets the tone for the book–and the attitude of the author–but the anecdote is revealing and horrifying to me. Happily, we know that America turned from following this dangerous path that encouraged anti-intellectualism and anti-scientism. I’m sure some would think this just some liberal hyperbole; I don’t.
A few days before I started writing this book, a leading candidate for the presidency of the United States was asked on national television whether he believed in the theory of evolution. He shrugged off the question with a dismissive jab of humor: “It’s interesting that that question would even be asked of someone running for president,” he said. “I’m not planning on writing the curriculum for an eighth-grade science book. I’m asking for the opportunity to be president of the United States.”
It was a funny line, but the joke only worked in a specific intellectual context. For the statement to make sense, the speaker had to share one basic assumption with his audience: that “science” was some kind of specialized intellectual field, about which political leaders needn’t know anything to do their business. Imagine a candidate dismissing a question about his foreign policy experience by saying he was running for president and not writing a textbook on international affairs. The joke wouldn’t make sense, because we assume that foreign policy expertise is a central qualification for the chief executive. But science? That’s for the guys in lab coats.
That line has stayed with me since, because the web of events at the center of this book suggests that its basic assumptions are fundamentally flawed. If there is an overarching moral to this story, it is that vital fields of intellectual achievement cannot be cordoned off from one another and relegated to the specialists, that politics can and should be usefully informed by the insights of science. The protagonists of this story lived in a climate where ideas flowed easily between the realms of politics, philosophy, religion, and science. The closest thing to a hero in this book—the chemist, theologian, and political theorist Joseph Priestley—spent his whole career in the space that connects those different fields. But the other figures central to this story—Ben Franklin, John Adams, Thomas Jefferson—suggest one additional reading of the “eighth-grade science” remark. It was anti-intellectual, to be sure, but it was something even more incendiary in the context of a presidential race. It was positively un-American. [p. xiii—xiv]
But there is a lighter side to enjoy here, at least for some of us who can see the humor. I don’t think I have heard any fundamentalists recently who advocated taking lightning rods off churches because they interfere with god’s will. It always strikes me as odd how some science can apparently be perfectly consonant with such an absolutist belief system.
The most transformative gadget to come out of the electricians’ cabinet of wonders was the lightning rod, also a concoction of Franklin’s. [...] Humans had long recognized that lightning had a propensity for striking the tallest landmarks in its vicinity, and so the exaggerated height of church steeples—not to mention their flammable wooden construction—presented a puzzling but undeniable reality: the Almighty seemed to have a perverse appetite for burning down the buildings erected in His honor. [pp. 22—23]
Finally, here is the author quoting Thomas Jefferson writing to Joseph Priestley, after Priestly’s house, scientific instruments, and laboratory notes had all been destroyed by a reactionary mob under the flag of “Church and King”. I think the ironic parallels with our own recent unpleasantness under the previous administration couldn’t be clearer, but the lessons of the Founding Fathers keep getting willfully distorted.
What an effort my dear Sir of bigotry, in politics and religion, have we gone through! The barbarians really flattered themselves they should be able to bring back the times of Vandalism, when ignorance put everything into the hands of power and priestcraft. All advances in science were proscribed as innovations. They pretended to praise and encourage education, but it was to be the education of our ancestors. We were to look backwards, not forwards, for improvement; the President himself declaring in one of his answers to addresses that we were never to expect to go beyond them in real science. This was the real ground of all that attacks you. [pp. 197—198]
Mar
12
Posted by jns on
March 12, 2009
Sir David Attenborough has revealed that he receives hate mail from viewers for failing to credit God in his documentaries. In an interview with this week’s Radio Times about his latest documentary, on Charles Darwin and natural selection, the broadcaster said: “They tell me to burn in hell and good riddance.”
Telling the magazine that he was asked why he did not give “credit” to God, Attenborough added: “They always mean beautiful things like hummingbirds. I always reply by saying that I think of a little child in east Africa with a worm burrowing through his eyeball. The worm cannot live in any other way, except by burrowing through eyeballs. I find that hard to reconcile with the notion of a divine and benevolent creator.”
Attenborough went further in his opposition to creationism, saying it was “terrible” when it was taught alongside evolution as an alternative perspective. “It’s like saying that two and two equals four, but if you wish to believe it, it could also be five … Evolution is not a theory; it is a fact, every bit as much as the historical fact that William the Conqueror landed in 1066.”
[Riazat Butt, "Attenborough reveals creationist hate mail for not crediting God", Guardian [UK], 27 January 2009.]
Mar
11
Posted by jns on
March 11, 2009
Earlier this year I read the book Brian Fagan, The Little Ice Age : How Climate Made History 1300 – 1850, by Brian Fagan (New York : Basic Books, 2000; 246 pages). He takes a close look at the relatively cool period between the “Medieval Warm Period” and the current warming period, and considers in careful but fascinating detail the ways that global climate change affected European society and culture. I thoroughly enjoyed it. I think he did an excellent job assembling all of his facts and dates and locations and keeping them well sorted out and in line with his thesis. I gave it high marks in my book note.
Anyway, here’s an excerpt that interested me. This was one of his many entertaining and enlightening asides, this one a nicely done short history of sunspots.
Sunspots are familiar phenomena. Today, the regular cycle of solar activity waxes and wanes about every eleven. years. No one has yet fully explained the intricate processes that fashion sunspot cycles, nor their maxima and minima. A typical minimum in the eleven-year cycle is about six sunspots, with some days, even weeks, passing without sunspot activity. Monthly readings of zero are very rare. Over the past two centuries, only the year 1810 has passed without any sunspot activity whatsoever. By an measure, the lack of sunspot activity during the height of the Little Ice Age was remarkable.
The seventeenth and early eighteenth centuries were times of great scientific advances and intense astronomical activity. The same astronomers who observed the sun discovered the first division in Saturn’s ring and five of the planet’s satellites. They observed transits of Venus and Mercury, recorded eclipses of the sun, and determined the velocity of light by observing the precise orbits of Jupiter’s satellites. Seventeenth-century scholars published the first detailed studies of the sun and sunspots. In 1711, English astronomer William Derham commented on “great intervals” when no sunspots were observed between 1660 and 1684. He remarked rather charmingly: “Spots could hardly escape the sight of so many Observers of the sun, as were then perpetually peeping upon him with their Telescopes…all the world over.” Unfortunately for modern scientists, sunspots were considered clouds on the sun until 1774 and deemed of little importance, so we have no means of knowing how continuously there were observed.
The period between 1645 and 1715 was remarkable for the rarity of aurora borealis and aurora australis, which were reported far less frequently than either before or afterward. Between 1645 and 1708, not a single aurora was observed in London’s skies. When one appeared on March 15, 1716, none other than Astronomer Royal Edmund Halley wrote a paper about it, for he had never seen one in all his years as a scientist–and he was sixty years old at the time. On the other side of the world, naked eye sightings of sunspots from China, Korea, and Japan between 28 B.C. and A.D. 1743 provide an average of six sightings per century, presumably coinciding with solar maxima. There are no observations whatsoever between 1639 and 1700, nor were any aurora reported.