06
Platypus Billsight
Posted by jns on September 6, 2005Two selections from today’s reading in Richard Dawkins’ The Ancestor’s Tale (Houghton Mifflin, Boston, 2004)
The point is that the platypus bill is not just a pair of jaws for dabbling and feeding, as in a duck. It is that too, though it is rubbery rather than horny like a duck’s bill. But far more interestingly, the platypus bill is a reconnaissance device, an AWACS organ. Platypuses hunt crustaceans, insect larvae and other small creatures in the mud at the bottom of streams. Eyes aren’t much use in mud, and the platypus keeps them tight shut while hunting. Not only that, it closes its nostrils and its ears as well. See no prey, hear no prey, smell no prey: yet it finds prey with great efficiency, catching half its own weight in a day.
If you were a skeptical investigator of somebody claiming a ‘sixth sense’, what would you do? You’d blindfold him, stop his ears and his nostrils, and then set him some task of sensory perception. Platypuses go out of their way to do the experiment for you. They switch off three senses which are important to us (and perhaps to them on land), as if to concentrate all their attention on some other sense. And the clue is given by one further feature of their hunting behaviour. They swing the bill in movements call saccades, side to side, as they swim. … [pp. 235--236]
Platypuses have about 40,000 electrical sensors distributed in longitudinal stripes over both surfaces of the bill. …a large portion of the brain is given over to processing the data from these 40,000 sensors. But the plot thickens. In addition to the 40,000 electrical sensors, there are about 60,000 mechanical sensors called push rods, scattered over the surface of the bill. Pettigrew and his co-workers have found nerve cells in the brain that receive inputs from mechanical sensors. And they have found other brain cells that respond to both electrical and mechanical sensors (so far they have found no brain cells that repond to electrical sensors only). Both kinds of cell occupy their correct position on the spatial map of the bill, and they are layered in a way that is reminiscent of the human visual brain, where layering assists binocular vision. Just as our layered brain combines information from the two eyes to construct a stereo percept, the Pettigrew group suggests that the platypus might be combining the information from electrical and mechanical sensors in some similiarly useful way. [p. 238]